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1 Medical pathway embeddings

1.1 Data

We consider a dataset (𝑋𝑖)𝑖=1..𝑛 of medical pathways. For each patient 𝑖, 𝑋𝑖 ≔ (𝑒𝑖, 𝑡𝑖, 𝑓𝑖),
where:

• 𝑒𝑖 ∈ ℝ𝑐𝑠 denotes the vector of tokenized events. It is a tensor1 which size is common
for all patients2 (an hyperparameter called the context size, 𝑐𝑠), that contains integers
between 0 and the vocabulary size |𝒱|.

• 𝑡𝑖 ∈ ℝ𝑐𝑠 is the temporal vector, containing the dates3 for each event in 𝑒𝑖. For now we
only consider consultation and medication type of events.

• 𝑓𝑖 ∈ ℝ2 corresponds to the patient general features, for now age and gender.

At this stage, the pathways only contain consultations and pharmaceuticals events. We plan to
add way more types of event, including deaths, hospitalizations, medical procedures etc.

1.2 Transformer-based models

1.2.1 Architecture

• An embedding matrix of size ℝ|𝒱|,𝑑𝑒𝑚𝑏𝑒𝑑 projects each token of the sequence to an
embedding vector. Adapting from the classical Transformer, we use 𝑡𝑖 to have a time-
aware positional encoding using a sinusoidal encoding. At the beginning of the sequence,
we add a symbolic [START] token, composed of the summed embeddings of age and
gender.

1Actually, we consider several tensors (and several vocabulary sizes) - one for each type of tokens, but we do
not get into the details here.

2Shorter sequences are padded, longer are cropped.
3To describe a date, we actually use the number of days since 01/01/2016, the start of the available dataset
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• These embeddings are then passed to causal4 self-attention layers, so that the Transformer-
based model outputs causally contextualized embeddings for each token so that:

𝐺𝑃𝑇𝜃(𝑋𝑖) ∈ ℝ𝑐𝑠,𝑑𝑒𝑚𝑏𝑒𝑑

where 𝜃 parametrizes the neural network.

1.2.2 Pre-training strategy

At a given position in the pathway, we consider the pre-training task of predicting, for each
token, if it will appear within the next 𝑡 days. We consider, simulatenously, several 𝑡 ∈ 𝒯, 𝒯
being the sorted set of short term horizons, typically 14, 30, 60, 90, 180 days.

Let, for this task:

• 𝑔𝜙 ∶ ℝ𝑐𝑠,𝑑𝑒𝑚𝑏𝑒𝑑 → [0, 1]𝑐𝑠,|𝒱|,|𝒯| the neural prediction head for this task (parametrized by
𝜙), on top of the Transformer layers

• for a patient 𝑖, 𝑌𝑖,⋅,⋅,⋅ ∈ {0, 1}𝑐𝑠,|𝒱|,|𝒯| the ground truth5

The pre-training solves:

𝜃∗, 𝜙∗ ∈ argmin
𝑛

∑
𝑖=1

𝑐𝑠
∑

pos=1
∑
𝑤∈𝒱

∑
𝑡∈𝒯

BCE (𝑔𝜙 ∘ 𝐺𝑃𝑇𝜃(𝑋𝑖)pos,𝑤,𝑡, 𝑌𝑖,pos,𝑤,𝑡)

+ 𝜆 Mon (𝑔𝜙 ∘ 𝐺𝑃𝑇𝜃(𝑋𝑖))

where:

• BCE(𝑥, 𝑦) = 𝑦 log(𝑥) + (1 − 𝑦) log(1 − 𝑥)
• for all 𝑖, Mon (𝑔𝜙 ∘ 𝐺𝑃𝑇𝜃(𝑋𝑖)) ≔

4The rationale for having a causal mask is that we want to be able to exploit any embedding at any time
(with only one inference pass through the model) without them having “seen” the future. Typically, the
pre-training task (see Section 1.2.2) is such a task. However, we still plan to train a BERT - pre-training
task is still in discussion (see Section 2.3).

5For each short term horizon 𝑡, we crop the pathways 𝑡 before the end date of our dataset so that we can
always compute a ground truth

2



1.2.3 Results

We trained a “large” model (40M parameters) and a “small” one (5M parameters). It seems
that the big model improves the result, leading us to think there is a signal to capture and
that the task is “learnable”.

Figure 1: ROC curve of the pre-training task for a given specialty on a test set of 10,000
patients.

Still, the models converge quickly, and even small models achieve good convergence. This raises
the (open) question of complexifying the task at some point.

2 Causal inference

We are interested in the impact of losing one’s Médecin Traitant (Primary Care Provider, PCP)
on different health outcomes, and ultimately how this impact is varying across several groups
(for instance between regions with dense medical services and medical deserts). Such a shock -
due to death or retirement of the doctor - affects approximately 1M patients in France every
year (1,000 GPs are leaving each year, each one them being the PCP of 1,000 patients on
average).

2.1 Framework

Up to a given time 𝑡, we have:

• The covariate 𝑋<𝑡 ≔ (𝑒<𝑡, 𝑡<𝑡, 𝑓<𝑡), the medical history of the patient
• 𝑊𝑡 is the treatment at time t and can either be:

3



1. the proportion of days the patient has spent without a PCP during the period
[𝑡 − 𝛿𝑃𝐶𝑃, 𝑡], 𝛿𝑃𝐶𝑃 being a hyperparameter controlling the length of the window

2. the maximum number of consecutive days without having a PCP, anytime in the
past

• 𝑌𝑡(𝑊𝑡), the binary outcome, indicating whether death has occured within a given time
window [𝑡, 𝑡 + 𝛿𝑑](which length 𝛿𝑑 is again chosen)

2.2 Estimating the CATE

We want to estimate the Conditional Average Treatment Effect (CATE):

𝜏(𝑥, 𝑤) ≔ 𝔼[𝑌𝑡 ∣ 𝑋<𝑡 = 𝑥, 𝑊𝑡 = 𝑤]

2.2.1 Assumptions

• SUTVA :
𝑌𝑡(𝑤) = 𝑌𝑡 if 𝑊𝑡 = 𝑤

– The others not having a PCP for a given amount of time does not influence my
probability to die

– Only one version of treatment ?

• Conditional ignorability

∀𝑤 ∈ ℝ+, 𝑌𝑡(𝑤) ⟂ 𝑊𝑡 ∣ 𝑋<𝑡

• Overlap

0 < ℙ(𝑊𝑡 = 𝑤|𝑋<𝑡 = 𝑥) < 1, ∀(𝑤, 𝑥) ∈ (ℝ+, ℝ𝑑𝑒𝑚𝑏𝑒𝑑)

2.2.2 Estimators

For a given time t, we define 𝑝𝑜𝑠𝑡 as being the last position in the patient’s pathway before 𝑡,
and we define the embedding of the pathway:

𝐺𝑃𝑇 path(𝑋<𝑡) ≔ 𝐺𝑃𝑇𝜃∗(𝑋<𝑡)𝑝𝑜𝑠𝑡
∈ ℝ𝑑𝑒𝑚𝑏𝑒𝑑
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S-learner & T-learner

The S-learner is based on “outcome models” that try to capture the link between the outcome
and the features (Abécassis et al. (2025)).

More precisely, we train on the validation set a head 𝑔𝜙 ∶ ℝ𝑑𝑒𝑚𝑏𝑒𝑑 × ℝ+ → [0, 1] minimizing
the binary cross-entropy loss on death prediction - to obtain 𝜙∗6. At the end of the day:

̂𝜏SLearner(𝑥, 𝑤) ≔ 𝑔𝜙∗(𝐺𝑃𝑇 path(𝑥), 𝑤) − 𝑔𝜙∗(𝐺𝑃𝑇 path(𝑥), 0)

where the baseline is “not having lost your PCP / having a PCP during all the period”.

� There is no T-learner for continuous treatment, a priori

R-learner

Another approach consists in trying to model the propensity score, the probability of being
treated given 𝑋.

A first head 𝑔𝜙𝑚
∶ ℝ𝑑𝑒𝑚𝑏𝑒𝑑 → [0, 1] is trained on the death prediction task, so that for a given

pathway 𝑥, 𝑔𝜙∗
𝑚

(𝐺𝑃𝑇 path(𝑥)) is close to the conditional mean outcome 𝑚(𝑥) = 𝔼[𝑌𝑡|𝑥].

Another head 𝑔𝜙𝑒
∶ ℝ𝑑𝑒𝑚𝑏𝑒𝑑 → ℝ+ is trained to predict the treatment 𝑊𝑡 of a given individual

(minimizing a Mean Squared Error).

Finally, we train the CATE estimator training a head 𝑔𝜙𝜏
∶ ℝ𝑑𝑒𝑚𝑏𝑒𝑑 → [0, 1] by minimizing the

R-loss:

𝜙∗
𝜏 ∈ argmin

𝜙𝜏
𝑌𝑡 − 𝑔𝜙∗

𝑚
(𝐺𝑃𝑇 path(𝑋<𝑡))

− (𝑊𝑡 − 𝑔𝜙∗
𝑒

(𝐺𝑃𝑇 path(𝑋<𝑡))) ⋅ 𝑔𝜙𝜏
(𝐺𝑃𝑇 path(𝑋<𝑡))

� There is no DR-learner for continuous treatment, a priori

2.3 Benchmarks

WIP

6In this formulation, we assume that the embeddings are frozen (we only train 𝜙 at 𝜃∗ constant). Another
alternative is to fine-tune the Transformer model, training both 𝜙 and 𝜃 here, with the same task, same loss,
same dataset. This is true for all the remaining of this document.
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